Files Class List
SpatialVector6d Class Reference

Detailed Description

6D spatial vector (for 3D) with double type elements

+ Inheritance diagram for SpatialVector6d:

Public Member Functions

Initialization methods
void Set (const Point3< double > &p1, const Point3< double > &p2)
 
void Set (double a1, double a2, double a3, double b1, double b2, double b3)
 
void Zero ()
 
Transpose methods
void SetTranspose ()
 
SpatialVector6 Transpose () const
 
Unary operators
SpatialVector6 operator- () const
 
Binary operators
SpatialVector6 operator- (const SpatialVector6 &s) const
 
SpatialVector6 operator+ (const SpatialVector6 &s) const
 
SpatialVector6 operator* (double t) const
 
double operator* (const SpatialVector6 &s) const
 
Assignment operators
void operator+= (const SpatialVector6 &s)
 
void operator-= (const SpatialVector6 &s)
 
void operator*= (double t)
 

Public Attributes

Components
Point3< double > a
 
Point3< double > b
 

Member Function Documentation

§ operator-()

SpatialVector6 operator- ( const SpatialVector6< double > &  s) const
inherited

Scalar product of two vectors. Note that one of the vectors should be motion vector ant the other should be a force vector. Otherwise, scalar product is not defined in spatial vector algebra.

§ operator+()

SpatialVector6 operator+ ( const SpatialVector6< double > &  s) const
inherited

Scalar product of two vectors. Note that one of the vectors should be motion vector ant the other should be a force vector. Otherwise, scalar product is not defined in spatial vector algebra.

§ operator*() [1/2]

SpatialVector6 operator* ( double  t) const
inherited

Scalar product of two vectors. Note that one of the vectors should be motion vector ant the other should be a force vector. Otherwise, scalar product is not defined in spatial vector algebra.

§ operator*() [2/2]

double operator* ( const SpatialVector6< double > &  s) const
inherited

Scalar product of two vectors. Note that one of the vectors should be motion vector ant the other should be a force vector. Otherwise, scalar product is not defined in spatial vector algebra.