
Real-Time Hair Rendering with Hair Meshes
Gaurav Bhokare

bhokare.gaurav@utah.edu
University of Utah

USA

Eisen Montalvo
eisen.montalvo@utah.edu

University of Utah
USA

Elie Diaz
elie.diaz@utah.edu
University of Utah

USA

Cem Yuksel
cem@cemyuksel.com

Cyber Radiance
USA

Figure 1: A scene with 100 characters, each with a unique hair model comprising of 100 thousand strands, rasterized in only 2 ms on an NVIDIA
GTX 4090 GPU (with 8× MSAA) using our real-time hair rendering method with hair meshes and our level-of-detail techniques. All 100 hair
mesh models in this scene fit in 1.7 MB (between 13 KB and 21 KB per model).

ABSTRACT
Hair meshes are known to be effective for modeling and animating
hair in computer graphics. We present how the hair mesh structure
can be used for efficiently rendering strand-based hair models on
the GPU with on-the-fly geometry generation that provides orders
of magnitude reduction in storage and memory bandwidth. We use
mesh shaders to carefully distribute the computation and a cus-
tom texture layout for offloading a part of the computation to the
hardware texture units. We also present a set of procedural styling
operations to achieve hair strand variations for a wide range of
hairstyles and a consistent coordinate-frame generation approach
to attach these variations to an animating/deforming hair mesh.
Finally, we describe level-of-detail techniques for improving the
performance of rendering distant hair models. Our results show an
unprecedented level of performance with strand-based hair render-
ing, achieving hundreds of full hair models animated and rendered
at real-time frame rates on a consumer GPU.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657521

CCS CONCEPTS
• Computing methodologies → Rasterization.

KEYWORDS
Real-time rendering, hair rendering, hair modeling, hair meshes.
ACM Reference Format:
Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel. 2024. Real-
Time Hair Rendering with Hair Meshes. In Special Interest Group on Com-
puter Graphics and Interactive Techniques Conference Conference Papers ’24
(SIGGRAPH Conference Papers ’24), July 27–August 01, 2024, Denver, CO, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3641519.3657521

1 INTRODUCTION
Hair is a crucial visual component of virtual characters. That is why
it has received a substantial amount of attention in graphics in the
context of modeling [Chai et al. 2016; Daldegan et al. 1993; Wang
et al. 2009; Yuksel et al. 2009a], animation [Chai et al. 2014; Hsu
et al. 2022, 2023; Wu and Yuksel 2016], and rendering [Marschner
et al. 2003; Yan et al. 2015; Yuksel and Tariq 2010]. In all of these, the
geometric complexity of hair is one of the leading challenges. This
is because most humans have on the order of 100 thousand hair
strands and, depending on the length and style, each may require
a curve with many control points. Therefore, a typical full hair
model can easily exceed a million vertices, making it particularly
expensive for real-time rendering.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641519.3657521
https://doi.org/10.1145/3641519.3657521
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641519.3657521&domain=pdf&date_stamp=2024-07-13


SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel

In this paper, we present how the hair mesh structure [Yuksel
et al. 2009a] can be used for accelerating real-time strand-based
hair rendering on the GPU and managing its geometric complexity
(Figure 1). Hair meshes were initially introduced as a method for
modeling hair. A hair mesh is a volumetric structure formed by
extruding polygonal faces of a scalp model. The individual hair
strands are generated within these extrusions, which are then mod-
ified using a variety of styling operations that define the geometric
variations of hair strands. This allows the user to precisely specify
the overall shape of a hair model, circumventing the geometric
complexity of individual strands. In addition, hair meshes allow
automatically placing the internal vertices of the volumetric struc-
ture, allowing the user to concentrate on the external surface of
a hair model, thereby bringing hair modeling close to polygonal
modeling of typical surfaces, commonplace in computer graphics.

Later on, hair meshes were shown to be effective for fast and
stable hair simulation [Wu and Yuksel 2016], thoughwe concentrate
on the real-time rendering problem in this paper.

We generate hair strands during rendering within GPU shaders
using a given hair mesh and a set of styling parameters that control
the procedural functions specifying strand variations. This avoids
the need for storing strand-based hair data, which can easily take
hundreds of megabytes, and updating it as the hair moves/deforms.
Instead, hair motion is captured by simulating the hair mesh and
animating the styling parameters, reducing the amount of data to
be stored and managed by several orders of magnitude.

Our hair geometry generation process follows the steps of the
original hair mesh modeling framework [Yuksel et al. 2009a] with
some key differences for facilitating real-time rendering:

• We carefully organize the computation workload to match
the SIMD parallelization of mesh/compute shaders.

• We introduce a novel texture-space layout of the hair mesh
data for utilizing the hardware texture units to efficiently
perform the interpolation operations and spline generation
within the volumetric embedding of the hair mesh.

• We propose a consistent method for local coordinate-frame
generation needed for applying styling variations that adapt
to arbitrary deformations of the hair mesh.

• We describe procedural styling operations that can generate
a wide variety of hairstyles from a small set of parameters
(the details are included in the supplemental document).

• We present level-of-detail techniques that can automatically
reduce the geometry to be generated, allowing a large col-
lection of hair models to be efficiently rendered.

Our results show that our framework can render hundreds of
unique strand-based hair models (without instancing) at real-time
frame rates on current GPUs, offering an unprecedented geometric
complexity for real-time hair rendering on high-end GPUs of today
and making strand-based hair rendering a more affordable option
for lower-end devices. An example from our tests is presented in
Figure 1, showing a scene with 100 characters with full-resolution
strand-based unique hair models with individual animations, (sim-
ulated and) rendered at real-time frame rates.

2 BACKGROUND
Before we describe the details of our method, in this section, we
present the related prior work on real-time hair rendering (Sec-
tion 2.1) and the details of the hair mesh structure (Section 2.2).

2.1 Related Work
The immense geometric complexity of hair has always been a chal-
lenge for real-time rendering. Earlier methods avoided this complex-
ity by representing hair as a surface with a texture [Scheuermann
2004], severely limiting the quality and the realism of the rendered
models. As GPUs became more powerful, strand-based hair render-
ing emerged as an attractive, though expensive, alternative [Chai
et al. 2014; Ren et al. 2010; Tariq and Bavoil 2008; Xu et al. 2011; Yu
et al. 2012; Yuksel and Keyser 2008; Zinke et al. 2008].

The geometric complexity of strand-based hair rendering not
only requires a substantial amount of computation but also incurs
the cost of data movement when each strand is explicitly stored.
Besides the additional storage cost, this data movement can easily
become the bottleneck of GPU rendering performance.

One solution for significantly reducing the cost of datamovement
is generating hair strands on-the-fly during rendering [Yuksel and
Tariq 2010]. Obviously, this approach also dictates how the full hair
model and its animation are defined.

A common approach is using a small number of guide hairs that
are used for determining the shapes of other hair strands. However,
without any additional information, this can only generate hairs
that simply interpolate the guides [Yuksel and Tariq 2010]. There-
fore, the state-of-the-art methods first generate all hair strands,
then for each hair vertex compute interpolation weights of neigh-
boring guide hairs, and finally use these weights for linear hair
skinning (LHS) [Games 2021; Somasundaram 2015] during render-
ing to generate the full-resolution hair model by interpolating these
guide hairs. This approach is very effective for efficiently animating
strand-based hairstyles by only computing the deformations of the
guide hairs. However, it must still store the interpolation weights,
which can easily take as much space as storing the individual hair
vertex positions. That is why rendering full-resolution hair models
remains expensive in practice for real-time graphics applications.

Our solution utilizes on-the-fly hair generation using hairmeshes
[Yuksel et al. 2009a] that avoids the cost of storing the full-resolution
hair model. A similar approach is also used for fiber-level rendering
of yarn-based cloth models on the GPU [Wu and Yuksel 2017a,b].

Level-of-detail methods are ubiquitous in real-time rendering
[Liu et al. 2017; Mercier et al. 2022; Zhu et al. 2022]. They have
also been used for real-time hair rendering [Yuksel and Tariq 2010]
and they are easy to incorporate with on-the-fly hair generation.
Our approach for level-of-detail is similar to existing methods, but
includes some critical details to avoid artifacts when transitioning
between detail levels and properly utilizing GPU parallelism.

Some recent work presents hair rendering methods using neural
networks as a promising new direction [Chai et al. 2020; Rosu et al.
2022; Wei et al. 2018]. While these methods are slower than LHS
for rasterizing 3D hair models and consume even more memory,
they offer advantages in generating realistic hair appearance. Our
method can be utilized in future neural hair rendering pipelines
that rely on strand-based hair rasterization.



Real-Time Hair Rendering with Hair Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

root
layer

layer 1

layer 2

layer 3

bundle 1

bundle 2

bundle 3

bundle 4

(a) Hair mesh (b) Generated hairs (c) Styled hairs

Figure 2: A 2D representation of (a) a hair mesh with 4 bundles
extruded from a scalp mesh at the root level, (b) the hair strands
generated from the hair mesh, and (c) the strands after applying
procedural styling operations (source: [Yuksel et al. 2009a]).

2.2 The Hair Mesh Structure
The hair mesh structure [Yuksel et al. 2009a] can be considered
as layers of extrusions on a polygonal scalp model, as shown in
Figure 2. The scalp mesh is called the root layer. Multiple layers of
extrusions starting from one scalp face form a bundle. Thus, each
root-layer face corresponds to a different bundle.

The individual hair strand curves are generated within these
extruded volumes. The root position of each hair strand corresponds
to a barycentric coordinate on a face of the scalp model. This forms
the first control point of the strand curve. The other control points
are formed using the same barycentric coordinate on successive
extrusion layers from the same scalp face. Yuksel et al. [2009a] uses
cubic Catmull-Rom splines [Catmull and Rom 1974]with centripetal
parameterization [Yuksel et al. 2009b] to form an interpolating
curve from these control points, though other curve formulations
can be used as well. The vertices of the hair mesh on successive
extrusions over the same root vertex are connected using the same
curve formulation, forming curved edges along the hair growth
direction and corresponding curved external surfaces.

Since hair meshes form volumetric structures, many of their
vertices are hidden behind their external surfaces. For simplifying
the volumetric modeling process, these internal vertices are placed
automatically, based on the user-specified positions of the external
hair mesh vertices that appear on their external surfaces.

The individual hair strands generated from a hair mesh, as de-
scribed above, form a uniform hair flow within the hair mesh vol-
ume, lacking any variation between neighboring strands. Such
variations are introduced via a set of styling operations. These are
typically random perturbations or procedural functions applied to
the vertices of a hair strand, which are initially placed along the
strand curve generated from the hair mesh. Yuksel et al. [2009a]
uses the barycentric embedding of a hair strand within the hair
mesh for defining the coordinate frame in which these styling oper-
ations are applied, so that these variations follow the deformations
of an animating hair mesh.

The on-the-fly hair generation method we describe in this paper
follows the same high-level process, but differs in details, as it is
customized for the computation process of the GPU cores and for
utilizing texture filtering units to offload some computations.

3 RENDERINGWITH HAIR MESHES
Our strand-based hair rendering approach converts the hair mesh
into a special texture that allows using the texture filtering hardware
for accelerating the generation of a hair strand curve from a hair
mesh (Section 3.1). We use mesh/compute shaders to generate hair
strands from the given hair mesh during rendering (Section 3.2).
This involves placing the hair strand roots (Section 3.3), perturbing
their vertices via a series of styling operations (Section 3.4), and
computing their tangent directions (Section 3.5), which is needed
for shading. For further acceleration, we apply level-of-detail by
dynamically reducing the number of hair strands we generate and
the vertex count per hair based on the camera distance (Section 3.6).

3.1 The Hair Mesh Texture
We use a hair mesh texture for storing the vertex positions of the
given hair mesh (Figure 3). It is common to send various types of
custom data to the GPU shaders using textures. Our hair mesh
texture, however, is structured to take advantage of the texture
filtering hardware available on the GPU to perform some of the
interpolation computations we need during hair strand generation.

Without loss of generality, we design our approach for quad-
dominant hair meshes that are formed by extruding a scalp mesh of
quads and triangles. Note that any scalp face (and its bundle) that is
a higher-degree polygon can be trivially split into quads/triangles.

The hair mesh texture is stored as a standard 3D texture on the
GPU, with each texel storing a 3D position in object space. We use
three vectors s★, t★, and r★ to denote the orthogonal coordinate
frame of this texture (Figure 3b). The texels on its first 2D slice
perpendicular to the r★ direction correspond to the root layer of
the hair mesh and we call it the root slice (Figure 3c). The texels
of the root slice store the root-layer vertex positions (i.e. vertex
positions of the scalp mesh). For each quad face of the root layer,
the vertex positions are copied to the texels of a 2×2 block on the
root slice. Triangle faces are handled by duplicating one of their
vertices and similarly copying onto 2×2 blocks.

This allows using the texture filtering hardware to compute a
bilinear interpolation of the four vertices of a quad face during
hair generation. Given a point p★ on the root slice of the hair
mesh texture between the centers of a 2×2 block of texels (the
highlighted green area in Figure 3c), sampling this texture at p★
returns the corresponding object-space coordinate p by bilinearly
interpolating these four root-layer vertex positions.

This process alsoworks for triangle faces of the scalp by adjusting
the sampling position, as we explain in Section 3.3.

The vertex positions of the hair mesh on successive layers are
copied onto other 2D slices of the hair mesh texture, which we
call layer slices, with each layer corresponding to a specific slice
perpendicular to the r★ direction of the 3D texture (e.g. p5 and p10
positions in Figure 3 are copied to texels on slices marked as layer
1 and layer 2, respectively). This allows using hardware trilinear
interpolation to compute the 3D position within the hair mesh
volume.

Yet, hair strands are cubic Catmull-Rom splines, so we cannot
rely on a single trilinear interpolation between layers of a hair
mesh to compute a position along the curve. For supporting cubic
spline interpolation, we convert each segment of the Catmull-Rom



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel

p0p1

p2

p3

p4

p5

p10

b0

b5

b5

b10

+

+

-

-

root
layer

layer 1

layer 2

s*t*

r*

root layer

layer 1

layer 2

p0p1p3

p2p2p4

s* s*

r* r*
p0p1p3

b0

b5

b5

b10

p5

p10

p0p1p3

q0

q5

q5

q5,10

q10

q0,5

p5

p10

+

+

+

+

-

-

-

-

duplicated
vertex

s*t*
(a) Hair mesh (b) Hair mesh texture (c) Root slice (d) Cubic Bézier (e) Quadratic Bézier

Figure 3: An example hair mesh model and its hair mesh texture: (a) the hair mesh, (b) its 3D hair mesh texture, (c) the 2D root slice of this hair
mesh texture, (d) the first 2D slice along the t★ direction with cubic Bézier control points, and (e) the same slice with quadratic Bézier control points
that are generated by splitting each cubic Bézier segment into two quadratic Bézier curves. In this example, the cubic Bézier curve with control
points p0, b+0 , b

−
5 , and p5 is converted two quadratic Bézier curves using p0, q

+
0 , and q0,5 for the first one and q0,5, q

−
5 , and p5 for the second.

spline into a cubic Bézier curve with 4 control points (Figure 3a).
Then, control points can be placed on four successive intermediate
slices of the 3D texture, placed between layer slices (the gray layers
shown in Figure 3d). Then, any point along the curves within a
bundle of the hair mesh can be computed by three trilinear inter-
polations (between three successive slices) followed by three linear
interpolations, using de Casteljau’s algorithm. This way, the texture
filtering unit performs most of the computation needed for both
bilinear interpolations within the bundle and the evaluation of the
interpolated hair spline at any point along the hair.

For further optimization, we approximate each cubic Bézier seg-
ment as two quadratic Bézier segments using the method of Truong
et al. [2020]. For each quadratic segment, it is sufficient to perform
two trilinear interpolations using the texture-filtering hardware
followed by a single linear interpolation in software. Thus, our 3D
hair mesh texture is formed as shown in Figure 3e with three
intermediate slices between each pair of root/layer slices.

In general, the topology of an arbitrary scalp mesh may not be
suitable for simply copying all its vertex positions on the 2D lattice
of the root slice. Such cases can be easily handled by splitting the
scalp mesh into multiple pieces to be copied onto the hair mesh
texture separately.

We assume that the mapping of the hair mesh root layer onto
the root slice of the hair mesh texture is prepared manually (anal-
ogous to texture mapping of common surfaces), though it can be
automated, while the successive layers along the r★ direction are
handled automatically based on the given 2D mapping.

3.2 Hair Generation on the GPU
We generate hair strands on the GPU during rendering. These
strands are re-generated for each render pass and never stored. This
means repeating some computations that could otherwise be shared
between passes and even frames. On the other hand, eliminating
the storage of hair strands, which can easily take hundreds of

megabytes for a single hair model, is a substantial saving that more
than justifies repeated computation during rendering. Nonetheless,
to achieve the best trade-off, we must carefully organize the hair
generation workload in a way that matches the computation flow
of the GPU hardware. Below we describe our solution for parallel
hair generation process using GPU mesh/compute shaders.

Standard methods for on-the-fly hair generation on the GPU
use tessellation shaders. We can use tessellation shaders with our
method aswell, though this approach has strict limits on the number
of hair vertices and the number of hair strands that can be generated
per patch. Therefore, we favor mesh/compute shaders instead.

Compute shaders are preferred if hair generation will be followed
by software rasterization. Thismight be favorable, since hair strands
often turn into many small triangles that can be rendered more
efficiently in software than hardware rasterizers on current GPUs.
Our implementation, however, relies on the hardware rasterizer, so
we describe our hair generation method using mesh shaders.

Nonetheless, the process we describe below can be applied to
compute shaders as well, as we explain at the end.

We utilize 3 levels of parallelism offered by hair meshes:

(1) Bundle-level: A hair mesh contains multiple bundles.
(2) Strand-level: Each bundle contains multiple hair strands.
(3) Vertex-level: Each hair strand contains multiple vertices.

Our mesh shaders execute at the strand-level parallelism. We
match the computation load to the operation of GPU cores that
work in SIMD blocks (i.e. wavefronts in AMD and warps in NVIDIA
hardware) of 𝑆 threads, where 𝑆 varies by hardware (typically 32
or 64). To maximize occupancy we split our mesh shader workload
into groups of 𝑠 threads, where 𝑆 is a multiple of 𝑠 .

Each mesh shader thread in a SIMD block computes 𝑛 vertices,
where a hair strand is formed by 𝑛𝑠 +1 vertices. Computing a vertex
involves evaluating its initial curve position within the hair mesh
by sampling the hair mesh texture multiple times followed by



Real-Time Hair Rendering with Hair Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

linear interpolation (as explained above in Section 3.1) and then
applying procedural styling operations. One exception is the root
vertex of the strand, which only requires a single lookup of the
hair mesh texture on the root slice without applying any other
interpolation or styling perturbation, since styling is not applied
to the root vertices. The resulting hair strand curves are rendered
as camera-facing triangle strips each with 2𝑛𝑠 + 2 vertices and 2𝑛𝑠
triangles.

We spawn a task shader for each hair mesh bundle. Our task
shader determines the number of hair strands to be generated
within its bundle, which may involve culling and level of detail, as
explain in Section 3.6. Then, it spawns as many mesh shaders as
the number of hair strands to be rendered for that bundle. Thus,
task shaders work with bundle-level parallelization, strand-level
parallelization is exploited with different mesh shader instances,
and the SIMD cores running a mesh shader utilize the vertex-level
parallelization.

The main challenge with a compute shader implementation is
handling our task shader operations that determine the number of
hair strands per bundle and the total number of compute shader
executions. This can be performed on the CPU prior to dispatching
the compute shaders or it can be handled as an initial pass with
compute shaders on the GPU.

Then, compute shaders can operate similarly to ourmesh shaders,
followed by software rasterization. An alternative implementation
of compute shaders can switch between our task shader and mesh
shader computations, which would require implementing a soft-
ware schedular. We have not explored these compute shader al-
ternatives in our tests. Future work can determine which option
would be preferable for a given workload and GPU hardware.

3.3 Hair Root Placement
A hair strand is uniquely defined by its root position within the
hair mesh. Therefore, for placing a hair strand within a bundle, we
simply need to pick a random root location for it. We do so using a
precomputed set of 2D sample locations 𝝃 = [𝜉𝑠 𝜉𝑡 ]𝑇 within [0, 1]2.
A sample is chosen using the local index of a hair strand andmapped
onto the root slice of the hair bundle.

To achieve a natural placement of hair roots, we use a blue noise
distribution for precomputing the 2D sample locations, generated
by sample elimination [Yuksel 2015]. This method allows us to gen-
erate a progressive sample set, such that any number of samples
taken from the beginning of the set forms blue noise. In our imple-
mentation, we use the same set of random samples for all bundles.
To achieve more variety multiple sets of random samples can be
precomputed, each bundle using a different set. For picking root
positions on triangle scalp faces, we use a different set of precom-
puted 2D sample locations. This is because using the sample set
generated for a quad face on a triangle would bias the hair root
locations towards the duplicated vertex in the hair mesh texture
layout. Instead, we generate the sample set for triangles using sam-
ple elimination within 𝝃 ∈ [0, 1]2 but by first selecting samples
within a triangular half, such that 𝜉𝑠 + 𝜉𝑡 < 1. Then, we map them
onto 𝝃 △ = [𝜉△𝑠 𝜉△𝑡 ]𝑇 ∈ [0, 1]2 within the full quad space, such that
𝜉△𝑠 = 𝜉𝑠 (1 − 𝜉𝑡 ) and 𝜉△𝑡 = 𝜉𝑡 . Using bilinear interpolation with 𝝃 △

corresponds to barycentric interpolation with coordinates 𝜉𝑠 , 𝜉𝑡 ,

and 1− 𝜉𝑠 − 𝜉𝑡 , where the barycentric coordinate 𝜉𝑡 corresponds to
the duplicated vertex on the hair mesh texture layout.

Since our precomputed sample sets are generated for a square
shape, the blue noise characteristics of the distribution weaken
whenmapped onto a skewed or non-uniformly-scaled quad/triangle
of the scalp surface. Nonetheless, this approach still produces a
more natural hair root distribution with close-by hair roots mostly
avoided, as compared to simply using random numbers with a
uniform distribution (i.e. white noise)

3.4 Styling Coordinates
Hair styling is a crucial process, altering the shapes of individual
hair strands and specifying the geometric variations between them.
It is typically applied as a set of procedural functions or random
offsets altering hair vertex positions. We include the details of the
styling operations we use in our implementation in our supplemen-
tal document. Other styling operations can be used as well.

The most important component of the styling process is defining
the local styling coordinates that would remain consistent as the
hair mesh deforms. The styling perturbations of hair vertices are
defined within these local styling coordinates. The amplitudes of
the styling perturbations, however, are defined in the object space,
so that they are not scaled by expansions/contractions of the hair
mesh bundles, which can happen when the hair mesh is animated.

We achieve this by defining a texture-space embedding of the
hair mesh. Similar to standard texture mapping, hair mesh vertices
at the root layer are placed on a 2D texture space by specifying their
𝑢𝑣 coordinates. Just like texture mapping, seams may be introduced
and some root layer vertices along seams can be placed at multiple
locations within this 2D texture space. This process is handled
manually or simply copied from the 𝑢𝑣 layout of the scalp mesh.

For handling the extruded layers of the hair mesh, we extend this
texture space to 3D with 𝑢𝑣𝑤 coordinates. Extrusions of the hair
mesh bundles take their 𝑢𝑣 coordinates from their corresponding
root layers, but are assigned a different 𝑤 coordinate, such that
𝑤 = 0 at the root layer with increasing 𝑤 towards the tip layers.
We assume that these𝑤 coordinates are provided as a part of the
hair mesh, but they can also be automatically generated based on
the length of the path from each vertex to its root.

We record the texture-space coordinates of a hair mesh in two
textures. The first one is our 𝑢𝑣-texture, a 2D version of the hair
mesh texture, storing only the 𝑢𝑣 coordinates. The layout of this
2D 𝑢𝑣-texture matches the root slice layout of the hair mesh tex-
ture (Figure 3c), but it only records the 𝑢𝑣 values of the hair mesh.
The second one is our𝑤-texture, which is a 3D texture similar to
our hair mesh texture but only stores the scalar𝑤 values. Unlike
the hair mesh texture, however,𝑤-texture needs no intermediate
slices. For a given position p★ in the hair mesh texture, we can
easily sample these two textures to find the corresponding 𝑢𝑣𝑤

coordinate.
Most styling operations can be computed based on this 𝑢𝑣𝑤

coordinate. However, the resulting styling perturbation directions
d𝜏 are defined in this 3D texture space. Therefore, we must

transform them to the corresponding object-space directions
d = Mp★d𝜏 using a transformation matrix

Mp★ =
[
û v̂ ŵ

]



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel

(a) Finite differences (b) Ours

Figure 4: Computing styling coordinates (a) using finite differences
can lead to styling discontinuities, visible as a vertical seam down the
middle in this example, (b) our solution avoids such seams.

where û, v̂, and ŵ are the object-space vectors that correspond to
the texture-space û𝜏 , v̂𝜏 , and ŵ𝜏 directions at position p★ of the
hair mesh texture.

For computing these object-space vectors û, v̂, and ŵ, a simple
solution would be using finite difference by sampling the hair
mesh texture around p★. Yet, besides the numerical issues of
finite difference, this approach would not produce desirable results,
because it would not form a continuously rotating coordinate frame
within the hair mesh. This is because the 𝑢𝑣𝑤 coordinates vary
linearly within a bundle and object-space û, v̂, and ŵ directions
computed for a bundle can be arbitrarily different from the ones
within a neighboring bundle. Therefore, using finite differences
would lead to styling perturbations that change discontinuously,
forming visible seams between hair mesh bundles, as shown in
Figure 4.

To ensure a continuous transformation of styling perturbations,
we define consistent object-space û, v̂, and ŵ directions for each
vertex of the hair mesh, which are shared by all neighboring bun-
dles using the same vertex. The û direction of a hair mesh vertex
is defined as the weighted average of all linearly-transformed di-
rections û𝑖 determined by each triangle 𝑖 that surrounds the vertex
(i.e. triangles containing the vertex and its two edges) at the same
layer of the hair mesh, as shown in Figure 5. Thus,

û =
u
∥u∥ with u =

∑
𝑖 𝐴𝑖u𝑖∑
𝑖 𝐴𝑖

, (1)

where 𝐴𝑖 is the texture-space area of the triangle 𝑖 .
This linear transformation for a triangle 𝑖 can be represented by

a 2×2 matrix T𝑖 , such that

T𝑖 =
[
𝑢1 − 𝑢0 𝑢2 − 𝑢0
𝑣1 − 𝑣0 𝑣2 − 𝑣0

]
(2)

where𝑢 𝑗 and 𝑣 𝑗 with 𝑗 ∈ {0, 1, 2} are the𝑢𝑣 coordinates of the three
vertices of the triangle. Let p𝑗 be their object-space positions. We
transform the texture-space û𝜏 and v̂𝜏 for this triangle using[

u𝑖 v𝑖
]
=
[
p1 − p0 p2 − p0

]
T−1𝑖 . (3)

Note that this process does not guarantee that û and v̂ directions
at a hair mesh vertex are perpendicular, thus the transformation of

Figure 5: Four triangles surrounding a vertex (highlighted in red)
at the same hair mesh layer. Notice that each triangle contains the
vertex and two edges coming out of the vertex, highlighted in blue.

the resulting coordinate frame may include skew. We define ŵ as
the orthogonal direction to both û and v̂, such that

ŵ =
û × v̂
∥û × v̂∥ . (4)

We precompute the û and v̂ directions for the hair mesh ver-
tices and store them in two separate 3D textures, u-texture and
v-texture, which are stored similarly to the hair mesh texture by
recording the computed û and v̂ vectors instead of positions. Just
like our 𝑤-texture, we do not need intermediate slides for these
two textures either. Thus, u and v are obtained by single lookups.

Table 1 lists all 5 textures used in our system. As the hair mesh
deforms, we must update the textures that contain object-space
positions and directions:

hair mesh texture, u-texture, and v-texture. The other tex-
tures (𝑢𝑣-texture and 𝑤-texture), do not need any dynamic up-
dates.

Table 1: All 5 textures we use for representing hair meshes.

Texture Dim. Texel Data
hair mesh texture 3D Object-space vertex position
𝑢𝑣-texture 2D Root vertex 𝑢𝑣 styling coordinate
𝑤-texture 3D Vertex𝑤 styling coordinate
u-texture 3D Object-space styling direction u
v-texture 3D Object-space styling direction v

3.5 Hair Tangents
We need the hair tangent directions for shading. It may be pos-
sible to compute them using finite differences or the analytical
derivatives of the procedural styling operations to determine the
infinitesimal tangent direction at each hair vertex we compute.
However, in addition to the extra computation cost of evaluating
such a tangent direction, it may not be representative of the final
hair strand shape we generate. This is because the styling functions
we use can have a higher frequency than what we can reliably
represent using the number of vertices we compute. Therefore, we
favor using a cheaper and simpler scheme that we describe below.

Let 𝑘 ∈ {0, 1, · · · , 𝑛𝑠} represent the index of a vertex along a hair
strand, where 𝑘 = 0 corresponds to the root vertex.

We assign the tangent direction t𝑘 as the vector from the previous
vertex to the next vertex, such that t𝑘 = p𝑘+1 − p𝑘−1, except for the
first and the last vertices. The tangent of the last vertex is set such
that its angular separation with the last hair segment p𝑛𝑠−1p𝑛𝑠
matches the angle of the previous tangent t𝑛𝑠−1, using

t̂𝑛𝑠 = 2q̂𝑛𝑠
(
t̂𝑛𝑠−1 · q̂𝑛𝑠

)
− t̂𝑛𝑠−1 (5)



Real-Time Hair Rendering with Hair Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

where q̂𝑘 = (p𝑘 − p𝑘−1)/∥p𝑘 − p𝑘−1∥ is the last segment direction
and t̂𝑘 = t𝑘/∥t𝑘 ∥. Similarly, the tangent of the first vertex is set as

t̂0 = 2q̂1
(
t̂1 · q̂1

)
− t̂1 . (6)

This particular way of defining the tangents of the endpoints is im-
portant to achieve consistent shading when we change the number
of hair vertices with level-of-detail, as we describe below.

3.6 Level-of-Detail
On-the-fly hair generation allows two level-of-detail (LOD) types by
dynamically reducing the number of hair strands and the number
of vertices per hair strand.

We use a simple scheme for determining the detail level 𝐿 for
either of the LOD types. It is based on the minimum distance 𝑑
to the camera, the vertical image resolution 𝑅, and a user-defined
scaling parameter 𝛼 that controls the performance/quality trade-off,
such that

𝐿 = min
(
1, ℎ𝑅

𝑑 tan𝜃 𝛼
)
, (7)

where 𝜃 is the camera’s field of view and ℎ is the world-space
hair model size that can be interpreted differently for the two LOD
types. When using an orthographic camera, such as when rendering
shadows for a directional light, the 𝑑 tan𝜃 term can be replaced by
the view height in world space.

The number of hair strands in each bundle and the number of
vertices per hair strand are scaled by 𝐿, subject to some restrictions
described below. The main challenge with level-of-detail is ensuring
seamless transitions between detail levels.

The 𝛼 value that would provide a good trade-off between quality
and performance can be different for different hairstyles. Also, it
would be favorable to use two different 𝛼 parameters for the two
LOD types, so that they can be tuned independently.

3.6.1 Strand Level-of-Detail. When reducing the number of hair
strands with LOD, we would like to avoid suddenly removing a
large number of hair strands at once with a slight change in 𝐿, since
that would make the detail transitions more noticeable.

Consider a hair mesh with 𝐹 bundles, each with exactly 𝑁 hair
strands. If we simply calculate the number of hair strands to be
generated using ⌈𝐿𝑁 ⌉, all 𝐹 bundles would reduce their hair strand
count simultaneously, so the effective detail levels would differ by
exactly 𝐹 hair strands.

We reduce the likelihood of such abrupt transitions by adding a
random increment 𝛿𝑖 ∈ [0, 1) to the number of hair strands 𝑁𝑖 we
compute for each bundle 𝑖 . The resulting number of hair strands
for bundle 𝑖 is calculated as

𝑁 LOD
𝑖 = ⌈𝐿(𝑁𝑖 + 𝛿𝑖 )⌉ . (8)

Though this simple solution does not guarantee that all detail
levels for a hair model would differ by exactly one hair strand, it
greatly reduces the likelihood of detail levels that differ by a large
number of hair strands. Equation 8 also ensures that each bundle is
assigned at least one hair strand for 𝐿 > 0.

When reducing hair strands with LOD, we must also compensate
for the reduction in hair material. We accomplish this by increasing
the thickness of hair strands by a factor of min(1/𝐿, 𝑁𝑖 ). Notice
that this increase in hair thickness is not synchronized with dis-

9-vertex strand
5-vertex strand

8-vertex strand

styling function

Figure 6: Strands with different numbers of vertices generated from
the same styling function. Notice that the difference between 9 and 8
vertices can be significant, even more so than 5 vertices.

crete reductions in hair count to minimize the amount of geometry
difference between detail levels.

For computing 𝐿, it would be reasonable to use a measure of the
hair bundle’s thickness as ℎ, such as the bundle’s scalp face size
(i.e. the radius of its bounding sphere or length of its longest edge)
at rest shape, since bundles that appear thinner on screen can be
approximated by rendering fewer hair strands.

3.6.2 Vertex Level-of-Detail. Though it is possible to reduce the
hair vertex count by increments of 1, that would lead to two impor-
tant problems. First, it becomes a challenge to maintain full SIMD
occupancy with an arbitrary number of hair vertices. Second, levels
may have distinctly different geometry, as illustrated in Figure 6,
making it difficult to seamlessly transition between levels. This
is because the styling functions can have strong high-frequency
components along a hair strand, beyond what can be represented
with the given number of hair vertices.

Our solution to avoid these issues ensures that the number of
strand vertices is always a power of 2 plus 1. We begin with picking
powers of 2 values for both the number of threads 𝑠 and the number
of vertices computed per thread 𝑛 for the highest-resolution LOD.
A lower-resolution level is formed by replacing either 𝑛 or 𝑠 with
a smaller power of 2, 𝑛LOD = 2𝑒𝑛 and 𝑠LOD = 2𝑒𝑠 , respectively. The
desired level is formulated using

𝑒 = 𝑒𝑛 + 𝑒𝑠 = max
(
0,
⌈
log2 (𝐿𝑛𝑠)

⌉)
(9)

that results in 2𝑒 + 1 hair vertices. Any combination of 𝑒𝑛 ≥ 0 and
𝑒𝑠 ≥ 0 that satisfies 𝑒 = 𝑒𝑛 + 𝑒𝑠 can be used.

In practice, replacing 𝑛 with 𝑛LOD can be implemented easily.
Replacing 𝑠 with 𝑠LOD, however, is not as trivial, since 𝑠 is a compile-
time constant, determining the number of threads to be used by the
mesh shader. Therefore, it is advisable to use 𝑠 = 𝑠LOD, keeping 𝑒𝑠
constant and only modifying 𝑒𝑛 . If 𝑒𝑠 must be modified, the mesh
shader can be configured to generate multiple hair strands, instead
of a single hair strand per execution, or different pre-compiled
shader programs can be used for different values of 𝑒𝑠 .

In addition, we must ensure that the LOD transition would be
seamless when reducing the number of vertices. We achieve this
by geometrically transitioning between detail levels.

Let 𝜆 ∈ [0, 1] be a user-defined parameter defining the transition
window between two detail levels. We define the next detail level
using

𝑒 = max
(
0,
⌈
log2 (𝐿𝑛𝑠) − 𝜆

⌉)
. (10)

When 𝑒 > 𝑒 , we transition between levels by morphing the higher-
resolution strand shape towards the lower-resolution one. This is
accomplished by moving each computed higher-resolution vertex
position p𝑘 with an odd index 𝑘 toward the centers of its neighbors,



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel

such that the updated vertex position p′
𝑘
is

p′
𝑘
= (1 − 𝛾) p𝑘 + 𝛾 p𝑘−1 + p𝑘+1

2 , (11)

where 𝛾 is the transition factor, calculated using

𝛾 = 1 −
log2 (𝐿𝑛𝑠) − 𝑒

𝜆
. (12)

This successfully morphs the strand shape between two levels,
but we must also adjust the tangent directions to ensure that the
change in the appearance of the shaded strand is also continu-
ous. We achieve this by computing two sets of tangents: t𝑘 using
the original positions p𝑘 (as in Section 3.5) and t̃𝑘 that only uses
the vertex positions with even 𝑘 (the vertices that will remain in
the lower-resolution level), such that t̃𝑘 with even 𝑘 is computed
similarly and t̃𝑘 with odd 𝑘 is set as the average (t̃𝑘−1 + t̃𝑘+1)/2.

Then, we simply morph the tangents for all hair vertices to
calculate the updated vertex tangents t′

𝑘
using t′

𝑘
= (1−𝛾) t𝑘 +𝛾 t̃𝑘 .

4 RESULTS
We tested our method on an NVIDIA GTX 4090 GPU. Figure 1
shows the performance of our approach with a scene containing
100 characters, each with unique hairstyles of 100 thousand strands.
The hair meshes are simulated with extended position-based dy-
namics [Macklin et al. 2016], using the force models of Wu and
Yuksel [2016] and sag-free initialization [Hsu et al. 2022]. The hair
strands are generated and rasterized in only 2 ms with 8×MSAA
(multisample antialiasing), excluding pixel shading time, using our
method with LOD. Obviously, for such a large scene LOD plays an
important role; without it, our method takes 47 ms to rasterize hair
in this scene.

To provide a direct comparison to LHS, the state-of-the-art
method for rendering strand-based hair models in practical ap-
plications, we generated the hair models in Figure 7 using our
method and extracted the strand data, to ensure that both methods
render identical hair models. Then, 1% of these hair strands are
selected as guide hairs, and LHS weights are precomputed for all
hair vertices. Finally, we rasterized the resulting models using LHS,
which takes 18 ms (with or without MSAA). We experimented with
different numbers of guide hairs (.1% to 10% of hairs) and did not
observe a measurable performance difference. In comparison, our
method can generate the identical models on the fly and rasterize
them in 1.8 ms without LOD to produce an identical image (without
MSAA), a performance improvement of 10×. Using 8× MSAA, our
method’s time goes up to 3.3 ms for these models. This cost increase
with MSAA hints that our method could benefit from an optimized
software rasterizer, instead of relying on the hardware rasterizer of
the GPU, as we use in our tests. Note that we do not animate the
guide hairs of LHS in this test, so the resulting rendered image is
identical to ours.

The performance difference between LHS and our method can
be explained by the amount of data used by the two methods. While
LHS requires 340 MB for these models, our textures only take 39 KB.
Note that we do not use LODwith either method in this comparison.

Figure 8 shows hairstyles rendered from different distances to
the camera with and without our LOD. Notice that our LOD meth-
ods can produce a similar image to rendering without LOD while
gradually reducing the rendered model complexity.

Figure 9 shows 200 Utah teapots, each with a separate hair mesh
and hairstyle of 50 thousand strands rendered using our method
without instancing. All hair in this scene rasterizes in 1.8 ms with
8× MSAA and 1.1 ms without MSAA using our method with LOD.
Without LOD, hair models in this scene form 66 billion triangles,
which rasterize in 150 ms using our method. All hair strands are
generated using our 5 textures per teapot that fit in 3.2 MB for this
entire scene, varying between 11 KB and 27 KB per teapot (based
on hair mesh resolutions of 198 to 378 vertices).

Figure 10 shows different hairstyles generated using our method
with different sets of styling parameters. Notice that a relatively
low-resolution hair model is sufficient for generating a complex
strand-based hair model with intricate details. These hairstyles are
merely some examples of what can be produced with the styling
functions we implemented. Note that various other procedural
styling functions can be easily integrated into our system.

Almost all hair models in Figure 10 take 1 ms to rasterize. In our
tests, disabling all styling computations provided only about 10%
to 20% improvement in the total render time.

5 CONCLUSION
We have presented how hair meshes can be used for real-time
strand-based hair rendering to achieve an unprecedented level of
performance, accomplished via careful distribution of the workload
in mesh shaders, offloading a part of the computation to texture
filtering units, and LOD. We also describe how to attach contin-
uous styling coordinates to the hair mesh, such that the styling
perturbations remain consistent as the hair mesh deforms. Thus,
our method can render strand-based hair for hundreds of characters
at real-time frame rates on high-end GPU and makes strand-based
hair rendering much more affordable for lower-end devices.

One major constraint of our approach is that the hair models
must be defined using a hair mesh and a set of styling parameters.
We cannot take arbitrary strand-based hair models and automati-
cally convert them into our representation.

ACKNOWLEDGMENTS
We would like to thank Mitchell John Allen for the initial explo-
rations and his help, Lee Perry-Smith for the character models, Dani
Garcia for the hair mesh models in Figure 10d and f, and Alexander
Tomchuk for the hair mesh and the character model in Figure 10e.

REFERENCES
Edwin Catmull and Raphael Rom. 1974. A Class of Local Interpolating Splines. In

Computer Aided Geometric Design. Academic Press, 317–326. https://doi.org/10.
1016/B978-0-12-079050-0.50020-5

Menglei Chai, Jian Ren, and Sergey Tulyakov. 2020. Neural Hair Rendering. InComputer
Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (Eds.). Springer International Publishing, Cham, 371–388.

Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair:
Fully Automatic Hair Modeling from a Single Image. ACM Trans. Graph. 35, 4,
Article 116 (jul 2016), 12 pages. https://doi.org/10.1145/2897824.2925961

Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A Reduced Model for Interactive
Hairs. ACM Trans. Graph. 33, 4, Article 124 (jul 2014), 11 pages. https://doi.org/10.
1145/2601097.2601211

A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thalmann. 1993. An integrated
system for modeling, animating and rendering hair. Computer Graphics Forum 12,
3, 211–221. https://doi.org/10.1111/1467-8659.1230211 MIRALab, Geneva Univ.,
Switzerland.

Epic Games. 2021. Unreal Engine. https://www.unrealengine.com

https://www.ir-ltd.net/
https://www.woodys3d.com/
https://www.woodys3d.com/
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1145/2897824.2925961
https://doi.org/10.1145/2601097.2601211
https://doi.org/10.1145/2601097.2601211
https://doi.org/10.1111/1467-8659.1230211
https://www.unrealengine.com


Real-Time Hair Rendering with Hair Meshes SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Figure 7: Three hair models totaling 300 thousand hair strands, gen-
erated and rasterized without LOD in 1.8 ms without MSAA and
3.3 ms with 8× MSAA, using our method. The identical image takes
18 ms (with or without MSAA) using LHS with 3 thousand guide hairs
in total. Our 5 textures for these three hair meshes fit in 39 KB in total,
while the strand-based representation for LHS uses 340 MB for its hair
strand data of almost 10 billion vertices.

Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-Stage
Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph. 41, 4, Article
64 (jul 2022), 13 pages. https://doi.org/10.1145/3528223.3530165

Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, and Kui Wu. 2023.
Sag-Free Initialization for Strand-Based Hybrid Hair Simulation. ACM Trans. Graph.
42, 4, Article 74 (jul 2023), 14 pages.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam Erasure and Seam-Aware Decoupling of Shape from Mesh Resolution. ACM
Trans. Graph. 36, 6, Article 216 (nov 2017), 15 pages. https://doi.org/10.1145/
3130800.3130897

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-
based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
Association for Computing Machinery, New York, NY, USA, 49–54. https://doi.
org/10.1145/2994258.2994272

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat
Hanrahan. 2003. Light Scattering from Human Hair Fibers. ACM Trans. Graph. 22,
3 (jul 2003), 780–791. https://doi.org/10.1145/882262.882345

Corentin Mercier, Thibault Lescoat, Pierre Roussillon, Tamy Boubekeur, and Jean-Marc
Thiery. 2022. Moving Level-of-Detail Surfaces. ACM Trans. Graph. 41, 4, Article
130 (jul 2022), 10 pages. https://doi.org/10.1145/3528223.3530151

Zhong Ren, Kun Zhou, Tengfei Li, Wei Hua, and Baining Guo. 2010. Interactive
Hair Rendering under Environment Lighting. In ACM SIGGRAPH 2010 Papers (Los
Angeles, California) (SIGGRAPH ’10). Association for Computing Machinery, New
York, NY, USA, Article 55, 8 pages. https://doi.org/10.1145/1833349.1778792

Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chenglei Wu, Sven Behnke,
and Giljoo Nam. 2022. Neural Strands: Learning Hair Geometry and Appearance
fromMulti-view Images. In Computer Vision – ECCV 2022, Shai Avidan, Gabriel Bros-
tow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer
Nature Switzerland, Cham, 73–89.

Thorsten Scheuermann. 2004. Practical Real-Time Hair Rendering and Shading. InACM
SIGGRAPH 2004 Sketches (Los Angeles, California) (SIGGRAPH ’04). Association for
Computing Machinery, New York, NY, USA, 147. https://doi.org/10.1145/1186223.
1186408

Arunachalam Somasundaram. 2015. Dynamically Controlling Hair Interpolation. In
ACM SIGGRAPH 2015 Talks (Los Angeles, California) (SIGGRAPH ’15). Association
for Computing Machinery, New York, NY, USA, Article 36, 1 pages.

Sarah Tariq and Louis Bavoil. 2008. Real Time Hair Simulation and Rendering on
the GPU. In ACM SIGGRAPH 2008 Talks (Los Angeles, California) (SIGGRAPH ’08).
Association for Computing Machinery, New York, NY, USA, Article 37, 1 pages.
https://doi.org/10.1145/1401032.1401080

Nghia Truong, Cem Yuksel, and Larry Seiler. 2020. Quadratic Approximation of Cubic
Curves. Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of HPG 2020) 3, 2,
Article 16 (2020), 17 pages. https://doi.org/10.1145/3406178

LvdiWang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based hair geometry
synthesis. In ACM SIGGRAPH 2009 Papers (New Orleans, Louisiana) (SIGGRAPH
’09). Association for Computing Machinery, New York, NY, USA, Article 56, 9 pages.

No LOD LOD No LOD LOD

Medium Distance Rendered Medium Distance Models

No LOD LOD No LOD LOD

Far Distance Rendered Far Distance Models

Figure 8: Rendered images and the corresponding models from
medium and far distances, showing that our LOD can produce a
similar rendered image as rendering the model without LOD, while
substantially simplifying the generated model geometry.

https://doi.org/10.1145/1576246.1531362
Lingyu Wei, Liwen Hu, Vladimir Kim, Ersin Yumer, and Hao Li. 2018. Real-Time Hair

Rendering Using Sequential Adversarial Networks. In Computer Vision – ECCV
2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.).
Springer International Publishing, Cham, 105–122.

Kui Wu and Cem Yuksel. 2016. Real-Time Hair Mesh Simulation. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D 2016) (Redmond, WA). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/2856400.2856412

Kui Wu and Cem Yuksel. 2017a. Real-Time Cloth Rendering with Fiber-Level Detail.
IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 12 pages.
https://doi.org/10.1109/TVCG.2017.2731949

Kui Wu and Cem Yuksel. 2017b. Real-Time Fiber-Level Cloth Rendering. In ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017) (San Francisco,
CA). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3023368.3023372

Kun Xu, Li-Qian Ma, Bo Ren, Rui Wang, and Shi-Min Hu. 2011. Interactive Hair
Rendering and Appearance Editing under Environment Lighting. ACM Trans.
Graph. 30, 6 (dec 2011), 1–10. https://doi.org/10.1145/2070781.2024207

Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015.
Physically-Accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM
Trans. Graph. 34, 6, Article 185 (nov 2015), 13 pages. https://doi.org/10.1145/
2816795.2818080

Xuan Yu, Jason C. Yang, Justin Hensley, Takahiro Harada, and Jingyi Yu. 2012. A
Framework for Rendering Complex Scattering Effects on Hair (I3D ’12). Association
for Computing Machinery, New York, NY, USA, 111–118. https://doi.org/10.1145/
2159616.2159635

Cem Yuksel. 2015. Sample Elimination for Generating Poisson Disk Sample Sets.
Computer Graphics Forum (Proceedings of EUROGRAPHICS 2015) 34, 2 (2015), 25–32.
https://doi.org/10.1111/cgf.12538

Cem Yuksel and John Keyser. 2008. Deep Opacity Maps. Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2008) 27, 2 (2008), 675–680. https://doi.org/10.
1111/j.1467-8659.2008.01165.x

Cem Yuksel, Scott Schaefer, and John Keyser. 2009a. Hair Meshes. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 5, Article 166 (2009), 7 pages.
https://doi.org/10.1145/1661412.1618512

Cem Yuksel, Scott Schaefer, and John Keyser. 2009b. On the Parameterization of
Catmull-Rom Curves. In 2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling (San Francisco, California). ACM, New York, NY, USA, 47–53.

Cem Yuksel and Sarah Tariq. 2010. Advanced Techniques in Real-Time Hair Ren-
dering and Simulation. In ACM SIGGRAPH 2010 Courses (Los Angeles, Califor-
nia) (SIGGRAPH 2010). ACM, New York, NY, USA, Article 1, 168 pages. https:
//doi.org/10.1145/1837101.1837102

Junqiu Zhu, Sizhe Zhao, Lu Wang, Yanning Xu, and Ling-Qi Yan. 2022. Practical
Level-of-Detail Aggregation of Fur Appearance. ACM Trans. Graph. 41, 4, Article
47 (jul 2022), 17 pages. https://doi.org/10.1145/3528223.3530105

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual Scattering
Approximation for Fast Multiple Scattering in Hair. ACM Trans. Graph. 27, 3 (aug
2008), 1–10. https://doi.org/10.1145/1360612.1360631

https://doi.org/10.1145/3528223.3530165
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/3130800.3130897
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/882262.882345
https://doi.org/10.1145/3528223.3530151
https://doi.org/10.1145/1833349.1778792
https://doi.org/10.1145/1186223.1186408
https://doi.org/10.1145/1186223.1186408
https://doi.org/10.1145/1401032.1401080
https://doi.org/10.1145/3406178
https://doi.org/10.1145/1576246.1531362
https://doi.org/10.1145/2856400.2856412
https://doi.org/10.1109/TVCG.2017.2731949
https://doi.org/10.1145/3023368.3023372
https://doi.org/10.1145/2070781.2024207
https://doi.org/10.1145/2816795.2818080
https://doi.org/10.1145/2816795.2818080
https://doi.org/10.1145/2159616.2159635
https://doi.org/10.1145/2159616.2159635
https://doi.org/10.1111/cgf.12538
https://doi.org/10.1111/j.1467-8659.2008.01165.x
https://doi.org/10.1111/j.1467-8659.2008.01165.x
https://doi.org/10.1145/1661412.1618512
https://doi.org/10.1145/1837101.1837102
https://doi.org/10.1145/1837101.1837102
https://doi.org/10.1145/3528223.3530105
https://doi.org/10.1145/1360612.1360631


SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Gaurav Bhokare, Eisen Montalvo, Elie Diaz, and Cem Yuksel

Figure 9: 200 Utah teapot models with unique hair models. Each hair model includes 50 thousand hair strands with a different set of styling
parameters. The hair meshes are simulated to generate the hair animations. All hair in this scene is rasterized in 1.8 ms in total with 8x MSAA.
Our 5 textures for 200 separate hair mesh models in this scene fit in 3.2 MB (17 KB per teapot on average).

(a) (b)

(c) (d)

(e) (f)

Figure 10: Different hair meshes and hairstyles generated from them, rendered using our method without LOD and with 8× MSAA. All hair
models have 100 thousand hair strands and take 1 ms to rasterize, except for (e), which takes 1.8 ms. The hair mesh resolutions and the storage
costs of the 5 textures we use for representing each of them are (a-b) 185 vertices/13 KB, (c) 477 vertices/34 KB, (d) 7892 vertices/563 KB, (e) 1316
vertices/94 KB, and (f) 3236 vertices/231 KB.


	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 The Hair Mesh Structure

	3 Rendering with Hair Meshes
	3.1 The Hair Mesh Texture
	3.2 Hair Generation on the GPU
	3.3 Hair Root Placement
	3.4 Styling Coordinates
	3.5 Hair Tangents
	3.6 Level-of-Detail

	4 Results
	5 Conclusion
	Acknowledgments
	References

